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Abstract. We calculate the nuclear spin relaxation rate of clean quasi-two-dimensional (2D)
superconductors with s-wave pairing in high magnetic fields using the BCS model and the Brandt,
Pesch and Tewordt approximation for the single-particle propagator. The calculation is valid in
the vicinity of Hc2(T ). Thermal fluctuations of vortices are not taken into account. We evaluate
numerically our results in the case of high-Tc materials and organic superconductors. In a
perpendicular field the Hebel–Slichter coherence peak is suppressed depending on the variation
of the quasi-particle lifetime belowTc. We also describe the magnetic field dependence of
the nuclear spin relaxation rate. Using the experimentally determined value of the quasi-particle
lifetime, the model reproduces the experimental initial variations ofT −1

1 versusT/Tc at different
magnetic fields. However, the Hebel–Slichter peak is conserved in the low-field limit, or when
the applied magnetic field is parallel to the superconducting planes.

1. Introduction

We present a calculation of the temperature dependence belowTc of the nuclear spin
relaxation rate of quasi-2D superconductors in the clean limit (l � ξa(0), where l is the
electron mean free path andξa(0) is the coherence length in thea–b plane) and high-field
regime (H close toHc2) within the framework of BCS theory [1]. Then we compare
the theoretical results with experimental data obtained in high-Tc compounds and organic
superconductors; these materials are quasi-2D systems in the clean limit. Our calculation
is based on a perturbation expansion; it is valid in the vicinity ofHc2.

The nuclear relaxation rateT −1
1 arises from the presence of direct and indirect coupling

between the nuclear spins system and its surroundings, i.e. the electronic spins. This
coupling leads to transitions between nuclear spin state levels and results in a lifetime
broadening of the resonance line and relaxation to equilibrium with the electronic spin
system. Measurements ofT −1

1 provide valuable information on the mixed state of type II
superconductors, particularly the nature of particle excitations since the transition rates are
dependent on the strength of the spin–lattice coupling as well as the effective number of
available states, and thus the coherent occupation of the superconducting condensed state.
In the framework of the BCS theory and in the low-field regime (H � Hc1) the dependence
of T −1

1 on the density of state leads to a divergence nearTc which results in the well known
Hebel–Slichter coherence peak in the variation ofT −1

1 versus the temperature [2].
One striking feature of high-Tc materials and organic superconducting compounds is

the absence of the coherence peak in the nuclear spin relaxation rateT −1
1 [3–11]. This
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property has been a central argument in theories for high-Tc materials based on either weak
coupling or strong coupling [12] and has in this regard served as a test for the validity
of the various theoretical models. However, most theoretical studies ofT −1

1 in high-Tc

superconductors have been conducted in the low-field limit (H � Hc1) while experimental
measurements have been mainly performed in strong magnetic fields (H � Hc1). In the
strong magnetic field regime, the nuclear spin relaxation rate shows not only the absence of
the coherence peak, but also a magnetic field dependence in both high-Tc superconductors
and superconducting organic materials [9, 11]. The absence of the Hebel–Slichter anomaly
is independent of the field orientation. A study ofT −1

1 in clean quasi-2D superconductors
at large fields is therefore of interest.

An early theoretical analysis of the nuclear spin relaxation rate in bulk superconducting
systems in the dirty limit (i.e.l � ξa(0)) with an applied magnetic fieldH comparable to
Hc2(T ) was carried out by Cyrot [13]. For this regime, he found that whenT � Tc(0),
where T is the temperature andTc(0) the transition temperature in zero magnetic field,
T −1

1 /T −1
1N is smaller than unity, and whenT ∼ Tc(0), T −1

1 /T −1
1N is larger than unity.T −1

1N is
the nuclear spin relaxation rate in the normal state. This result which has been confirmed
experimentally [14] is however not appropriate for clean superconductors among which a
prominent class is provided by high-Tc materials and organic superconductors. A theory
of NMR properties of clean three-dimensional (3D) superconductors has been investigated
earlier [15] using perturbation expansions in powers of the order parameter which break
down for small frequencyω. A more refined theory of the nuclear spin relaxation rate in
clean 3D superconducting systems under strong magnetic field was worked out by Brandt
and Pesch in a manner which extended the regime of validity of previous work [15, 16].
However, the anisotropic structure of high-Tc materials and organic superconductors
indicates that theoretical investigations should address the quasi-2D structure of these
materials. Although the conventional BCS theory (i.e. weak electron–phonon coupling,
s-wave order parameter) is generally not believed to describe superconducting cuprates, it
is of interest to know in detail its content for quasi-2D superconductors in the clean limit
under strong magnetic fields. This is our aim in this paper.

Making use of the single particle propagator derived by Brandt, Pesch and Tewordt
(BPT) [17], we study the nuclear spin relaxation rate of clean 2D superconductors in a
strong magnetic field within the BCS model. We find that the Hebel–Slichter coherence
peak is suppressed in a perpendicular field depending on the quasi-particle relaxation rate
below Tc. This suppression of the Hebel–Slichter peak is in agreement with experiments
on cuprates and organic superconductors. However, in contradiction to experiments, the
anomaly is restored at low fields. Furthermore, the anomaly is also restored if the external
field is rotated so as to become parallel to thea–b plane, which is also in contradiction
with experiments. This is not surprising given the inadequacy of the simple BCS theory
to describe high-Tc materials and organic superconductors. The theory outlined in this
paper is expected to describe in a more satisfactory way clean quasi-2D materials when
superconductivity is due to a weak electron–phonon coupling mechanism. Nonetheless, our
results may suggest that the field dependence ofT −1

1 observed in high-Tc materials and
organic superconductors in the strong magnetic field regime is linked with the quasi-2D
structure. This work deals with the mixed phase close toHc2; in that part of the phase
diagram, vortex lines in strongly anisotropic superconductors are insensitive to pinning
centres; they are in a liquid state [18]. Our calculation takes no account of the liquid
state thermal fluctuations, and concentrates on the effect of the order parameter fluctuations.
We show that the latter appear to be the dominant factor in the behaviour of the nuclear
relaxation time close toHc2.
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2. Nuclear spin relaxation rate in clean 2D superconductors

Brandt, Pesch and Tewordt (BPT) have in an early work studied clean 3D superconductors
in high magnetic fields [17] (see appendix). Assuming a rigid Abrikosov flux lines lattice
and an s symmetry order parameter, these authors derived the expression for the single-
particle propagator for clean type II superconductors in strong magnetic fields in the case
where the space variation of the order parameter1 is neglected by disregarding the small
components fork 6= 0 with respect to that atk = 0 in the Fourier-series development of
the order parameter. This approximation becomes very good in the London limit, i.e. when
κ � 1 whereκ = λ(0)/ξ(0). λ(0) and ξ(0) are the penetration length and the coherence
length, respectively. We will suppose that this limit is relevant for our system. The nuclear
spin–lattice relaxation rateT −1

1 is given by

1

T1T
∼ 1

ω0
Im χ(ω0)

whereχ(ω0) is the dynamic local response andω0 the Larmor nuclear frequency.T is the
temperature.

Following Houghton and Maki, the imaginary part of the spin susceptibility in the low-
frequency limit for clean superconducting systems can be written in terms of the BPT Green
functions as [19]

lim
ω→0

Im χ(ω)

ω
= C

∫
dE

2T
sech2

(
E

2T

)
[N2(E) + M2(E)] (1)

whereC is a constant,

N2(E) =
∫

d3p

(2π)3

d3p′

(2π)3
Im G(ξ, E + iδ) Im G(ξ ′, E + iδ) (2)

M2(E) = 12
∫

duρ(u)

∫
d3p

(2π)3

d3p′

(2π)3
Im F(ξ, u, E − iδ) Im F+(ξ ′, u, E + iδ) (3)

ρ(u) = (
ε
√

π
)−1

e−(u/ε)2
ε = kvF sinθ ξ = v(p − pF ).

Here k = (2eH/h̄)1/2 is the reciprocal lattice vector of the flux-line lattice andvF is the
Fermi velocity. θ is the angle between the particle momentum and the applied magnetic
field.

The BPT normal Green function is given by

G−1(ξ, ω + iδ) = ω + iδ − ξ − 12
∫ +∞

−∞
du

ρ(u)

ω + iδ + ξ − u
(4)

and the anomalous Green functionF is written as

F(ξ, u, ω + iδ) = G(ξ, ω + iδ)[ω + iδ + ξ − u]−1. (5)

For an anisotropic superconductor made up of superconducting planes stacked along an
axis taken as thec-axis, in the configuration where the applied magnetic field is perpendicular
to the planes, sinθ is equal to unity and we can rewrite equations (2) and (3) as follows:

N2(E) =
(

2π

d

)2 (
pF

vF (2π)2

)2 [ ∫
dξ Im G(ξ, E + iδ)

]2

(6)

M2(E) = 12

(
2π

d

)2 (
pF

vF (2π)2

)2 ∫
duρ(u)

∫
dξ dξ ′ Im F(ξ, u, E − iδ)

× Im F+(ξ ′, u, E + iδ) (7)
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whered is the interlayer distance.
Carrying out the integration in equation (6), we obtain a term proportional to the square

of the BPT density of state for quasi-2D systems:

N2(E) = π2N2
0

[
1 − 4

(
1

ε

)2 (
1 − F

(
2E

ε

))]2

(8)

whereN0 = m/2πd is the normal density of states. We assume here thatN0 is structureless
in the relevant energy range.

The functionF is defined as

F(x) = 2x2e−x2

[
1 +

∞∑
n=1

x2n

n!(2n + 1)

]
.

Similarly, integrating equation (7), we obtain

M2(E) = π2N2
0

[
1 − 2

(
1

ε

)2 (
1 − F

(
2E

ε

))]2

412

×
∫ +∞

−∞
du ρ(u)

[
2E − u − Re6

(2E − u − Re6)2 + (Im 6 + 2δ)2

]2

(9)

where

Re6 = 12

2E
F

(
2E

ε

)
Im 6 = √

π
12

ε
e−(2E/ε)2

.

E − Re6 and Im6 + δ are the real and the imaginary part of the pole of the BPT Green
function in the complexξ plane, respectively.

Recalling the fact that the same coherence factor appears in the matrix elements of both
the spin susceptibility and the nuclear spin relaxation rate, we can write the expression of
the nuclear spin relaxation rate as follows:

T −1
1

T −1
1N

=
∫ ∞

0

dE

2T
sech2

(
E

2T

) {[
1 − 4

(
1

ε

)2 (
1 − F

(
2E

ε

))]2

+
[

1 − 2

(
1

ε

)2 (
1 − F

(
2E

ε

))]2

412

×
∫ +∞

−∞
du ρ(u)

[
2E − u − Re6

(2E − u − Re6)2 + (Im 6 + 2δ)2

]2 }
(10)

whereT −1
1 andT −1

1N are the nuclear spin relaxation rate in the superconducting state and in
the normal state, respectively.δ = 1/2τ , whereτ is the quasi-particle lifetime.

3. Results and comparison with experiments

3.1. YBaCuO

In order to compare the prediction of the present model with experimental data on YBaCuO,
we calculate the variations ofT −1

1 from equation (10) by assumingTc = 90 K and
vF = 105 m s−1. The quantitiesHc2(T ) and 1(T ) are calculated as indicated in [20].
The curves a, b and c in figure 1 have been obtained in a magnetic field of 20 T. The origin
and temperature variation of the quasi-particle lifetime in high-Tc superconductors is still a
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matter of debate [21]. We consider for this quantity the values and temperature dependence
of the particle lifetime commonly derived from experiments. Defineτ0 = 0.74h̄/kBTc at
T = Tc. The quasi-particle lifetime is considered as constant and equal toτ0 in curve a and
is assumed in curve b to have the temperature dependenceτ = τ0Tc/T below Tc, which is
similar to that of the normal resistance of YBaCuO in thea–b plane. In curve c,τ is given
the temperature variationτ = 1.81× 103τ0e−7.5T/Tc derived from the experimental study of
σ1(ω) [21]. The emphasis, in the above expressions forτ , is less on the exact form of the
variations of this quantity than on the fact thatτ−1 is equal to constantτ0 in curve a and
exhibits a moderate and a rapid decrease from this value in curve b and c, respectively. The
Hebel–Slichter peak is suppressed for constantτ and for a moderate decrease ofτ−1 below
Tc, as shown by curves a and b, while a too steep decrease ofτ−1 does not lead to the
suppression of the coherence peak (curve c). We note, however, that in this case the peak is
strongly reduced with regard to the classical low-field BCS behaviour (curve d) calculated
for an anisotropy of the energy gap of 0.5 K. Figure 2 shows the temperature variation of
T −1

1 /T −1
1N for different values of the magnetic fieldH . Our calculation which is valid close

to Hc2 gives the variations ofT −1
1 only in the immediate vicinity ofTc and thus does not

allow detailed comparison with existing experimental data. However, it shows that asH

increases the curves exhibit a decrease in slope and come close to unity.

Figure 1. Temperature dependence of the nuclear spin
relaxation rate at 20 T for YBaCuO with quasi-particle
lifetime τ = constant (curve a),τ ∼ T −1 (curve b) and
τ ∼ e−7.5T/Tc (curve c). Curve d shows the classical
low-field BCS behaviour.

Figure 2. Temperature dependence of the nuclear spin
relaxation rate in YBaCuO when quasi-particle lifetime
τ is constant and for various magnetic fields: 20 T
(curve a); 50 T (curve b) and 70 T (curve c).

3.2. κ-(ET )2 Cu[N(CN)2]Br

Studies of organic superconductors are also characterized by a lack of general consensus
as to the nature of the mechanisms of their superconductivity. In particular, an s symmetry
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order parameter as well as unconventional pairing have been suggested on the basis of
experimental data [22]. In figure 3, we report theT −1

1 /T −1
1N experimental results obtained

at magnetic fields 2 T (dots), 3.7 T (squares) and 5.6 T (triangles) by Mayaffreet al [11]
on organic superconductorκ-(ET )2 Cu[N(CN)2]Br. The curves have been calculated with
the following parameter values derived from experiments:Tc(0) = 12.5 K; Hc2(0) ≈ 12 T;
τ = 0.55h̄/kBTc. The curves show no coherence peak, and also exhibit a temperature
and magnetic field dependence quantitatively consistent with experimental results. We
emphasize the fact that this result is obtained with one adjustable parameter, i.e. the value
of T1T at Tc.

Figure 3. Temperature dependence of the nuclear spin
relaxation rate at magnetic fields 2 T (curves a and d),
3.7 T (curves b and e), and 5.6 T (curves c and f)
for organic superconductorκ-(ET )2 Cu[N(CN)2]Br.
The dots, the squares and the triangles represent the
experimental results obtained by Mayaffreet al [11].

3.3. Discussion

In 2D and clean s-wave superconductors and weak electron–phonon coupling, the
suppression of the coherence peak in strong magnetic fields depends on the magnitude and
temperature dependence of the quasi-particle relaxation rate below the transition temperature.
The coherence peak is suppressed when the quasi-particle relaxation rate is constant, of the
order ofkBTc/h̄ at T = Tc, or when it decreases moderately belowTc from this value. But
for a rapid decrease of quasi-particle relaxation rate belowTc, the coherence peak is no
longer suppressed. In fact it is incorrect, in this last case, to speak about ‘coherence peak’.
The enhancement of the nuclear relaxation rate has the same origin as the enhancement of
σ1 (the real part of the conductivity) which is observed experimentally in YBaCuO, and
interpreted on the basis of a drastic suppression of electronic relaxation rate belowTc [21].
The interesting point here is that the enhancement of the nuclear relaxation time is not
seen in YBaCuO, while s-wave BCS theory would predict it to occur. In order to decide
whether this contradiction is due to the choice of s-wave symmetry, one should derive the
theory for the d-wave symmetry in the clean limit and for large fields [23]. In any case,
the theory framework, as it stands in this paper is clearly unable to describe the physics of
YBaCuO.
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On the other hand, the success of the theory in the case of the quasi-2D organic
superconductor mentioned in the previous section indicates that the model does incorporate
some of the essential physics. Obviously, a significant difference in the microscopic physics
of the organic superconductor as compared to YBaCuO is that the electronic relaxation time
in the latter is practically independent of the temperature in all of the superconducting phase;
one consequence, if this is correct, is that the microwave conductivityσ1 should not behave
like that of YBaCuO belowTc and should not exhibit the striking deviations from BCS
theory which are found in the latter compound. Indeed, microwave measurements ofσ1(ω)

in organic superconductors show a rapid decrease ofσ1 below Tc, as expected [24].
Both the suppression of the coherence peak and the magnetic field dependence ofT −1

1
arise from the effect of the magnetic field on the density of states. The density of states
N(ω, θ), calculated by BPT for clean 3D superconductors in strong magnetic fields, appears
to vary continuously from the normal density of stateN0 to the BCS curve when the
parameter1/kvF sinθ runs from zero to infinity. Therefore, for sufficiently large magnetic
fields the divergence atω = 1 in the density of states is wiped out and, consequently,
a significant decrease and even the suppression of the coherence peak in the nuclear spin
relaxation rate occurs since this quantity depends on the average overω of the square of
the density of states. This is even more pronounced in 2D systems where sinθ reaches its
maximum value equal to unity. As the magnetic field becomes larger, the density of states
tends towards the normal density of statesN0 making theT −1

1 /T −1
1N curves come close to

unity.
The agreement of our microscopic calculation with experiments in the case of the organic

superconductor is also surprising, at first sight, in view of the fact that the vortex system
close toHc2 in this strongly anisotropic system is in a liquid state [18]. Our calculation
assumes a periodic Abrikosov array of vortices. In fact, it shows that in this part of the
phase diagram, where the London penetration depth is much larger than the intervortex
mean distance, the vortex thermal fluctuations do not influence the nuclear relaxation rate.
At a larger distance from theHc2(T ) mean field curve, when the penetration depth has
decreased significantly, and the system is close to a solid–liquid transition, it is likely that
vortex thermal fluctuations have a noticeable effect onT1T . It would be useful to extend
the validity of our treatment to such regions of the phase diagram, but this requires more
work, since our perturbation theory approach is valid only in the vicinity ofHc2. In the
absence of such a complete theory we can nevertheless state that close toHc2 the behaviour
of the nuclear relaxation time is governed by the order parameter fluctuations and not by
the vortex thermal fluctuations.

Within the theoretical framework of the present paper, one should have a coherence peak
in the low-field limit since the density of states is then of BCS type, whereas experimental
T −1

1 shows no coherence peak in weak magnetic fields. Also, for a magnetic fieldH ,
which makes an angleφ with the c-axis, only thez-component of the magnetic fieldH ,
i.e. Hx cosφ, intervenes in the present calculation of the nuclear spin relaxation rate and
whenH is parallel to the superconducting planes there is no orbital effect. The density of
states is of the BCS type and so we expect from the present model that the coherence peak
is restored as the magnetic field is rotated from a direction perpendicular to the planes to
a direction parallel to the planes in contradiction with experiments. These results suggest
that the suppression of the Hebel–Slichter peak in real systems may be linked with other
factors such as the non-s-symmetry of the order parameter and strong electronic interactions
[12], which the model does not take into account, and that the BCS nuclear spin relaxation
rate behaviour is recovered at least in the vicinity ofTc, in the high-field regime, when the
magnetic field is perpendicular to the superconducting planes.
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4. Conclusion

In this paper, we have investigated the NMR relaxation timeT1 expected in an s-wave,
two-dimensional BCS superconductor in the clean limit. To our knowledge, this had not
been derived previously. We have found, not too surprisingly after second thoughts, that
the Hebel–Slichter anomaly is suppressed in strong fields. This results from the strong
suppression at large fields of the density of states square-root singularity responsible for
the Hebel–Slichter anomaly at low fields. A specific feature of the result is the expected
restoration of the Hebel–Slichter anomaly in a parallel field.

Various reasons exist as to why our results do not account for experimental findings
in superconducting cuprates. The weak-coupling BCS approach takes no account of the
strong electronic interactions known to be at work in those systems. The spectrum of
low-lying spin fluctuations is likely to be strongly affected by such electronic correlations
included in the vicinity of the normal phase. Another possible reason is the symmetry of the
order parameter, which may be d-wave in superconducting cuprates [25] and possibly not
s-wave in organics [22, 11]. It should be remembered that in a quasi-2D superconductor the
thermal fluctuations of the vortex lattice are expected to contribute to the NMR relaxation
rate, at least in the neighbourhood of a vortex lattice melting transition, an effect which is
completely absent in our calculation. Our results suggest that close toHc2, the variations of
T −1

1 are governed by the order parameter fluctuations and not by vortex thermal fluctuations.
Experiments conducted in the flux flow regime, however, contain the effect of the fluctuating
vortex liquid. The NMR relaxation time in a quasi-2D d-wave BCS superconductor in large
fields in the clean limit is currently being investigated and should be reported in the near
future [23].

Acknowledgments

The authors would like to thank K Holczer, K Maki and H Mayaffre for stimulating and
useful interaction during the course of this study.

Appendix

The integral equation for a pure type II superconductor Green function near the upper critical
field is written as

Gω(r, r ′) = G0
ω(r − r ′) −

∫
d3r1 d3r2 G0

ω(r − r1)V (r1, r2)G
0
−ω(r1 − r2)Gω(r2, r

′) (A1)

whereG0
ω is the Green function of the normal metal in the absence of the magnetic field.

The potential

V (r1, r2) = 1∗(r1)1
∗(r2) exp[−ieH(x1 + x2)(y1 + y2)] (A2)

describes a superconductor in the mixed state in a magnetic field whose spatial average is
H .

For the order parameter1(r), BPT consider the form of the Abrikosov vortex solution
derived from Ginzburg–Landau theory for conventional superconductors:

1(r) =
∑

n

Cneinqy exp

[
−eH

(
x − qn

2eH

)2
]

. (A3)

This form is strictly correct only in the Ginzburg–Landau region (T ∼ Tc), but remains
qualitatively correct far fromTc.
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SinceGω(r, r ′) depends on the sum coordinates,Gω(r, r ′) and its Fourier components,
Gω(p, k) have the periodicity of the flux-line lattice.Gω(p, k) is given by the following
equation:

Gω(r, r ′) =
∑

k

exp

[
i
1

2
k(r + r ′)

] ∫
d3p

(2π)3
Gω(p, k) exp[ip(r − r ′)] (A4)

where the momentumk takes on all the discrete values of a two-dimensional lattice
reciprocal to the spatial lattice of flux lines whose period is(h̄/2eH)1/2.

Equation (A1) can be written in terms of the Fourier coefficientsGω(p, k) as follows
for fixed p:

Gω

(
p − k

2
, −k

)
= δk,0G

0
ω(p) − G0

ω(p − k)
∑
k′

Gω

(
p − k + k′

2
, −k − k′

)
×

∫
d3p′

(2π)3
V (p′, k′)G0

−ω

(
p − p′ − k − k′

2

)
(A5)

whereV (p, k) is the Fourier component ofV (r, r ′).
In order to determineGω(p, 0), BPT consider an Abrikosov square flux-line lattice and,

by neglecting the Fourier coefficients12
k of the absolute square of the order parameter for

k 6= 0 with regard to12
0, they derived from equation (A5) the expression given in (4).
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